Base release in nucleosides induced by low-energy electrons: a DFT study.

نویسندگان

  • Xifeng Li
  • Léon Sanche
  • Michael D Sevilla
چکیده

Low-energy electrons are known to induce strand breaks and base damage in DNA and RNA through fragmentation of molecular bonding. Recently the glycosidic bond cleavage of nucleosides by low-energy electrons has been reported. These experimental results call for a theoretical investigation of the strength of the C(1)'-N link in nucleosides (dA, dC and dT) between the base and deoxyribose before and after electron attachment. Through density functional theory (DFT) calculations, we compare the C(1)'-N bond strength, i.e., the bond dissociation energy of the neutral and its anionic radical, and find that an excess electron effectively weakens the C(1)'- N bond strength in nucleosides by 61-75 kcal/mol in the gas phase and 76-83 kcal/mol in the solvated environment. As a result, electron-induced fragmentation of the C(1)'-N bond in the gas phase is exergonic for dA (DeltaG=-14 kcal/mol) and for dT (DeltaG=-6 kcal/mol) and is endergonic (DeltaG=+1 kcal/ mol) only for dC. In the gas phase all the anionic nucleosides are found to be in valence states. Solvation is found to increase the exergonic nature by an additional 20 kcal, making the fragmentation both exothermic and exergonic for all nucleoside anion radicals. Thus C(1)'-N bond breaking in nucleoside anion radicals is found to be thermodynamically favorable both in the gas phase and under solvation. The activation barrier for the C(1)'-N bond breaking process was found to be about 20 kcal/mol in every case examined, suggesting that a 1 eV electron would induce spontaneous cleavage of the bond and that stabilized anion radicals on the DNA strand would undergo base release at only a modest rate at room temperature. These results suggest that base release from nucleosides and DNA is an expected consequence of low-energy electron-induced damage but that the high barrier would inhibit this process in the stable anion radicals.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Design of Biosensors Based Transition-Metal Dichalcogenide for DNA-base Detection: A First-Principles Density Functional Theory Study

The main function purpose of nanobiosensors is to sense a biologically specific material and the kind of sensing platform and doping engineering has been an emerging topic and plays an important role in monolayer molybdenum disulfide (mMoS2). In this paper, we theoretically reveal the electronic structures of mMoS2 doped by 3d transition metals. Furthermore, adsorption of nucleic acid [Adenine ...

متن کامل

Interaction of low-energy electrons with the purine bases, nucleosides, and nucleotides of DNA.

The authors report results from computational studies of the interaction of low-energy electrons with the purine bases of DNA, adenine and guanine, as well as with the associated nucleosides, deoxyadenosine and deoxyguanosine, and the nucleotide deoxyadenosine monophosphate. Their calculations focus on the characterization of the pi* shape resonances associated with the bases and also provide g...

متن کامل

Interaction of low-energy electrons with the pyrimidine bases and nucleosides of DNA.

We report computed cross sections for the elastic scattering of slow electrons by the pyrimidine bases of DNA, thymine and cytosine, and by the associated nucleosides, deoxythymidine and deoxycytidine. For the isolated bases, we carried out calculations both with and without the inclusion of polarization effects. For the nucleosides, we neglect polarization effects but estimate their influence ...

متن کامل

Theoretical study of 2,3,7,8-tetrachlorodibenzo-para-dioxine removal by boron nitride-nanotube (BNNT): QSAR, IR-DFT

The study examined corrosion inhibition of corrosion inhibition of 5-methyl-2H-imidazol-4-carboxaldehyde and 1H-Indole-3-carboxaldehyde on mild steel in acidic medium using weight loss and Density Functional Theory (DFT) methods. DFT calculations were carried out at B3LYP/6-31+G** level of theory in aqueous medium on the molecular structures to describe electronic parameters. The values of ther...

متن کامل

Calculation and evaluation of energy deposition and S-value caused by low-energy electrons in a multicellular model using Geant4-DNA

Today, targeted radiation therapy (TRT) methods for cancer treatment, besides the goal of completely destroying the target tumor, attempts to prevent nearby healthy cells from exposure to ionizing radiation as far as possible. Hence, short-range charged particles, such as low-energy electrons that are suited to achieving these two goals together, play an important role in TRT and so, adoption o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Radiation research

دوره 165 6  شماره 

صفحات  -

تاریخ انتشار 2006